Your browser doesn't support javascript.
loading
Computationally restoring the potency of a clinical antibody against SARS-CoV-2 Omicron subvariants
Thomas A Desautels; Kathryn T Arrildt; Adam T Zemla; Edmond Y Lau; Fangqiang Zhu; Dante Ricci; Stephanie Cronin; Seth Zost; Elad Binshtein; Suzanne M Scheaffer; Taylor B Engdahl; Elaine Chen; John W Goforth; Denis Vashchenko; Sam Nguyen; Dina R Weilhammer; Jacky Kai-Yin Lo; Bonnee Rubinfeld; Edwin A Saada; Tracy Weisenberger; Tek-Hyung Lee; Bradley Whitener; James B Case; Alexander Ladd; Mary S Silva; Rebecca M Haluska; Emilia A Grzesiak; Thomas W Bates; Brenden K Petersen; Larissa B Thackray; Brent W Segelke; Antonietta Maria Lillo; Shankar Sundaram; Michael S Diamond; James E Crowe Jr; Robert H Carnahan; Daniel M Faissol.
Affiliation
  • Thomas A Desautels; Lawrence Livermore National Laboratory
  • Kathryn T Arrildt; Lawrence Livermore National Laboratory
  • Adam T Zemla; Lawrence Livermore National Laboratory
  • Edmond Y Lau; Lawrence Livermore National Laboratory
  • Fangqiang Zhu; Lawrence Livermore National Laboratory
  • Dante Ricci; Lawrence Livermore National Laboratory
  • Stephanie Cronin; Vanderbilt Vaccine Center
  • Seth Zost; Vanderbilt Vaccine Center
  • Elad Binshtein; Vanderbilt Vaccine Center
  • Suzanne M Scheaffer; Washington University in St. Louis
  • Taylor B Engdahl; Vanderbilt Vaccine Center
  • Elaine Chen; Vanderbilt Vaccine Center
  • John W Goforth; Lawrence Livermore National Laboratory
  • Denis Vashchenko; Lawrence Livermore National Laboratory
  • Sam Nguyen; Lawrence Livermore National Laboratory
  • Dina R Weilhammer; Lawrence Livermore National Laboratory
  • Jacky Kai-Yin Lo; Lawrence Livermore National Laboratory
  • Bonnee Rubinfeld; Lawrence Livermore National Laboratory
  • Edwin A Saada; Lawrence Livermore National Laboratory
  • Tracy Weisenberger; Lawrence Livermore National Laboratory
  • Tek-Hyung Lee; Lawrence Livermore National Laboratory
  • Bradley Whitener; Washington University in St. Louis
  • James B Case; Washington University in St. Louis
  • Alexander Ladd; Lawrence Livermore National Laboratory
  • Mary S Silva; Lawrence Livermore National Laboratory
  • Rebecca M Haluska; Lawrence Livermore National Laboratory
  • Emilia A Grzesiak; Lawrence Livermore National Laboratory
  • Thomas W Bates; Lawrence Livermore National Laboratory
  • Brenden K Petersen; Lawrence Livermore National Laboratory
  • Larissa B Thackray; Washington University in St. Louis
  • Brent W Segelke; Lawrence Livermore National Laboratory
  • Antonietta Maria Lillo; Los Alamos National Laboratory
  • Shankar Sundaram; Lawrence Livermore National Laboratory
  • Michael S Diamond; Washington University in St. Louis
  • James E Crowe Jr; Vanderbilt Vaccine Center
  • Robert H Carnahan; Vanderbilt Vaccine Center
  • Daniel M Faissol; Lawrence Livermore National Laboratory
Preprint in En | PREPRINT-BIORXIV | ID: ppbiorxiv-513237
ABSTRACT
The COVID-19 pandemic has highlighted how viral variants that escape monoclonal antibodies can limit options to control an outbreak. With the emergence of the SARS-CoV-2 Omicron variant, many clinically used antibody drug products lost in vitro and in vivo potency, including AZD7442 and its constituent, AZD1061 [VanBlargan2022, Case2022]. Rapidly modifying such antibodies to restore efficacy to emerging variants is a compelling mitigation strategy. We therefore sought to computationally design an antibody that restores neutralization of BA.1 and BA.1.1 while simultaneously maintaining efficacy against SARS-CoV-2 B.1.617.2 (Delta), beginning from COV2-2130, the progenitor of AZD1061. Here we describe COV2-2130 derivatives that achieve this goal and provide a proof-of-concept for rapid antibody adaptation addressing escape variants. Our best antibody achieves potent and broad neutralization of BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4, BA.5, and BA.5.5 Omicron subvariants, where the parental COV2-2130 suffers significant potency losses. This antibody also maintains potency against Delta and WA1/2020 strains and provides protection in vivo against the strains we tested, WA1/2020, BA.1.1, and BA.5. Because our design approach is computational--driven by high-performance computing-enabled simulation, machine learning, structural bioinformatics and multi-objective optimization algorithms--it can rapidly propose redesigned antibody candidates aiming to broadly target multiple escape variants and virus mutations known or predicted to enable escape.
License
cc_by_nd
Full text: 1 Collection: 09-preprints Database: PREPRINT-BIORXIV Type of study: Prognostic_studies Language: En Year: 2022 Document type: Preprint
Full text: 1 Collection: 09-preprints Database: PREPRINT-BIORXIV Type of study: Prognostic_studies Language: En Year: 2022 Document type: Preprint