This article is a Preprint
Preprints are preliminary research reports that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Preprints posted online allow authors to receive rapid feedback and the entire scientific community can appraise the work for themselves and respond appropriately. Those comments are posted alongside the preprints for anyone to read them and serve as a post publication assessment.
RPA-Based Method For The Detection Of SARS-CoV2
Preprint
in En
| PREPRINT-MEDRXIV
| ID: ppmedrxiv-20196402
ABSTRACT
Background:
Coronavirus disease 2019 (COVID-19) is a highly infectious disease with significant mortality, morbidity, and far-reaching economic and social disruptions. Testing is key in the fight against COVID-19 disease. The gold standard for COVID-19 testing is the reverse transcription polymerase chain reaction (RT-PCR) test. RT-PCR requires highly specialized, expensive, and advanced bulky equipment that is difficult to use in the field or in a point of care setting. There is need for a simpler, inexpensive, convenient, portable and accurate test. Our aims were to (i) design primer-probe pairs for use in isothermal amplification of the S1, ORF3 and ORF8 regions of the SARS-CoV2 virus; (ii) optimize the recombinase polymerase amplification (RPA) assay for the isothermal amplification of the named SARS-COV2 regions; (iii) detect amplification products on a lateral flow device. and (ii) perform a pilot field validation of RPA on RNA extracted from nasopharyngeal swabs.Results:
Assay validation was done at the National Reference Lab (NRL) at the Rwanda Biomedical Center (RBC) in Rwanda. Results were compared to an established, WHO-approved rRT-PCR laboratory protocol. The assay provides a faster and cheaper alternative to rRT-PCR with 100% sensitivity, 93% specificity, and positive and negative predictive agreements of 100% and 93% respectively.Conclusion:
To the best of our knowledge, this is the first in-field and comparative laboratory validation of RPA for COVID-19 disease in low resource settings. Further standardization will be required for deployment of the RPA assay in field settings. Keywords Recombinase Polymerase Amplification, COVID-19
cc_by_nc_nd
Full text:
1
Collection:
09-preprints
Database:
PREPRINT-MEDRXIV
Type of study:
Diagnostic_studies
/
Prognostic_studies
Language:
En
Year:
2020
Document type:
Preprint