Analysis of Crucial Transcription Factors of Berberine Against Cerebral Ischemia Based on Transcriptomics and Proteomics / 中国实验方剂学杂志
Chinese Journal of Experimental Traditional Medical Formulae
; (24): 100-108, 2022.
Article
in Zh
| WPRIM
| ID: wpr-940294
Responsible library:
WPRO
ABSTRACT
ObjectiveOn the basis of determining the protective effect of berberine (BBR) on cerebral ischemia, crucial transcription factors (TFs) of BBR against cerebral ischemia was identified by using transcriptome and proteome sequencing. MethodThe model of middle cerebral artery occlusion (MCAO) was established by thread embolization. The sham operation group, model group, low-dose group of BBR (dose of 37.5 mg·kg-1·d-1) and high-dose group of BBR (75 mg·kg-1·d-1) were set up. The rats were killed after continuous intragastric administration for 7 days. The pharmacodynamics was evaluated by Longa score and cerebral infarction rate, and the expressions of inflammatory cytokines, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and monocyte chemotactic protein-1 (MCP-1) were measured by enzyme-linked immunosorbent assay (ELISA). Then, RNA-Seq technique was used to detect the differentially expressed genes (DEGs) before and after BBR intervention, and DAVID 6.8 was used for enrichment analysis of DEGs. CatTFREs technique was used to detect differential TFs before and after BBR intervention, and DAVID 6.8 and STRING 11.0 were used for enrichment analysis and TFs association analysis. Finally, by integrating the activity of TFs and the changes of downstream target genes, crucial TFs were identified and the related regulatory network was constructed by Cytoscape 3.7.1. ResultCompared with the sham operation group, the neurological impairment was significant in the model group (P<0.01), and compared with the model group, the low and high dose BBR groups could significantly reduce the neurological function damage (P<0.01) and decrease the rate of cerebral infarction (P<0.01). Transcriptome data analysis showed that BBR was involved in the recovery process after cerebral ischemia mainly by affecting cell adhesion, brain development, neuron migration, calcium signaling pathway, cyclic adenosine monophosphate (cAMP) signaling pathway, inflammatory response and other related functions and signaling pathways. Proteomic data analysis showed that the differentially expressed TFs after BBR intervention interfered with cerebral ischemia mainly by regulating cell differentiation, immune system process, cell proliferation and other biological processes. In addition, integration analysis of TFs and DEGs revealed that transcription factor CP2-like 1 (TFCP2L1), nuclear factor erythroid-2 like 1 (NFE2L1), neurogenic differentiation protein 6 (NeuroD6) and POU domain, class 2, transcription factor 1 (POU2F1) were crucial TFs against cerebral ischemia-reperfusion injury mediated by BBR. ConclusionBBR has obvious protective effect on cerebral ischemia-reperfusion injury and its crucial TFs include TFCP2L1, NFE2L1, NeuroD6 and POU2F1.
Full text:
1
Database:
WPRIM
Type of study:
Prognostic_studies
Language:
Zh
Journal:
Chinese Journal of Experimental Traditional Medical Formulae
Year:
2022
Document type:
Article