Preparation and osteogenic properties of hydrogel scaffolds with different concentrations of laponite / 中华创伤骨科杂志
Chinese Journal of Orthopaedic Trauma
; (12): 522-527, 2022.
Article
in Zh
| WPRIM
| ID: wpr-956550
Responsible library:
WPRO
ABSTRACT
Objective:To prepare the hydrogel scaffolds with different concentrations of laponite and compare their osteogenic properties.Methods:The scaffolds of gelatin/sodium alginate hydrogel into which laponite was added according to the mass ratios of 0%, 1%, 2%, and 3% were assigned into groups T0, T1, T2, and T3. In each group, the compressive modulus was measured and the leaching solution for 24 h extracted to measure the ion release. Bone marrow mesenchymal stem cells (BMSCs) were cultured in the extract medium from each group and common medium (blank group) ( n=3) in the in vitro experiments to determine the expression of osteogenic genes Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and type I collagen after 7 days of culture. In the in vivo experiments, the scaffolds were implanted into the femoral condyle defects in rats, and a blank group with no scaffolds was set. The bone repair in each group was evaluated by hematoxylin-eosin(HE) staining and immunohistochemical staining. Results:The compressive modulus in group T2 [(139.05±6.43) kPa] was significantly higher than that in groups T0, T1 and T3 [(68.83±3.76) kPa, (101.18±3.68) kPa and (125.40±3.28) kPa] ( P<0.05). The ion contents of lithium, magnesium and silicon released from the 24 h leaching solution in group T2 were (0.031±0.005) μg/mL, (3.047±0.551) μg/mL and (5.243±0.785) μg/mL, insignificantly different from those in group T3 ( P> 0.05) but significantly larger than those in group T1 ( P>0.05). The in vitro experiments showed that the expression levels of Runx2, ALP and type I collagen in group T2 were 1.59±0.11, 2.02±0.08 and 1.06±0.17, significantly higher than those in the other groups ( P<0.05). HE staining showed that the implanted hydrogel was tightly bound to the bone tissue. Immunohistochemical staining showed that the numbers of Runx2 and osteocalcin positive cells in group T2 were significantly higher than those in the other groups. Conclusions:With ideal biocompatibility, hydrogel scaffolds with different concentrations of laponite can slowly release the decomposed ions of lithium, magnesium and silicon to promote the osteogenic differentiation of BMSCs and the repair of bone defects in vivo. A 2% concentration of laponite in the hydrogel scaffolds may result in the best results.
Full text:
1
Database:
WPRIM
Language:
Zh
Journal:
Chinese Journal of Orthopaedic Trauma
Year:
2022
Document type:
Article