Systematic analysis of MYB transcription factors related to the geniposide biosynthesis in Gardenia jasminoides Ellis based on whole genome / 药学学报
Yao Xue Xue Bao
; (12): 2522-2531, 2023.
Article
in Zh
| WPRIM
| ID: wpr-999135
Responsible library:
WPRO
ABSTRACT
MYB transcription factors are involved in the regulation of various secondary metabolites biosynthesis. Gardenia jasminoides Ellis is the commonly used Chinese herbal medicine, and its main active ingredient is geniposide. Here, leaves and flower buds at different developmental stages of G. jasminoides were used to explore MYB transcription factors related to geniposide biosynthesis based on genome and transcriptome analysis. Transcriptome data analysis showed that, different from the expression of the common pathway genes for terpenoid biosynthesis, the expression level of genes in the specific pathway of geniposide biosynthesis was significantly higher in flower buds than in leaves, which was the same as the organ accumulation pattern of this component. And the promoter regions of geraniol synthase, iridoid synthase and geniposidic acid methyltransferase involved in the specific pathway all contained multiple MYB-binding sites. A total of 105 MYB transcription factors were obtained by annotating the coding genes of G. jasminoides, which were divided into 68 1R-MYB, 33 R2R3-MYB, 3 3R-MYB and 1 atypical MYB transcription factor according to the number of conserved domain. Based on the analysis of phylogenetic tree and quantitative real-time PCR, three candidate MYB transcription factors related to geniposide biosynthesis were selected, including potential positive regulation factor GjMYB23 and negative regulation factors GjMYB31 and GjMYB73. The results of this study will lay a foundation for searching the regulation of geniposide biosynthesis and further analysis of the quality formation mechanism of G. jasminoides, so as to promote the breeding of excellent varieties of G. jasminoides.
Full text:
1
Database:
WPRIM
Language:
Zh
Journal:
Yao Xue Xue Bao
Year:
2023
Document type:
Article