Your browser doesn't support javascript.
loading
Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae)
El Faro, Lenira; Cardoso, Vera Lucia; Albuquerque, Lucia Galvão de.
Afiliación
  • El Faro, Lenira; Secretaria da Agricultura e Abastecimento. Agência Paulista de Tecnologia dos Agronegócios. Ribeirão Preto. BR
  • Cardoso, Vera Lucia; Secretaria da Agricultura e Abastecimento. Agência Paulista de Tecnologia dos Agronegócios. Ribeirão Preto. BR
  • Albuquerque, Lucia Galvão de; Universidade Estadual Paulista Júlio de Mesquita Filho. Faculdade de Ciências Agrárias e Veterinárias. Departamento de Zootecnia. Jaboticabal. BR
Genet. mol. biol ; Genet. mol. biol;31(3): 665-673, 2008. graf, tab
Article en En | LILACS | ID: lil-490053
Biblioteca responsable: BR1.1
ABSTRACT
Random regression models (RRM) were used to estimate covariance functions for 2,155 first-lactation milk yields of native Brazilian Caracu heifers. The models included contemporary group (defined as year-month of test and paddock) fixed effects, and quadratic effect of age of cow at calving. Genetic and permanent environmental effects were fitted by a random regression model and Legendre polynomials of days in milk (DIM). Schwarz's Bayesian information criteria (BIC) indicated that the best RRM assumed a six coefficient function for both random effects and a sixth order variance function for residual structure. Akaike's information criteria suggested a model with the same number of coefficients for both effects and a residual structure fitted by a step function with 15 variances. Phenotypic, additive genetic, permanent environmental and residual variances were higher at the beginning and declined during lactation. The RRM heritability estimates were 0.09 to 0.26 and generally higher at the beginning and end of lactation. Some unexpected negative genetic correlations emerged when higher order covariance functions were used. A model with four coefficients for additive genetic covariance function explains more parsimoniously the changes in genetic variation with DIM since the genetic parameter was more acceptable and BIC was close to that for a six coefficient covariance function.
Palabras clave
Texto completo: 1 Colección: 01-internacional Base de datos: LILACS Tipo de estudio: Clinical_trials / Prognostic_studies Idioma: En Revista: Genet. mol. biol Asunto de la revista: GENETICA Año: 2008 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Brasil
Texto completo: 1 Colección: 01-internacional Base de datos: LILACS Tipo de estudio: Clinical_trials / Prognostic_studies Idioma: En Revista: Genet. mol. biol Asunto de la revista: GENETICA Año: 2008 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Brasil