Two unusual glycerophospholipids from a filamentous fungus, Absidia corymbifera.
Biochim Biophys Acta
; 1531(3): 169-77, 2001 Apr 30.
Article
en En
| MEDLINE
| ID: mdl-11325609
The chloroform-methanol extractable lipids of the soil filamentous fungus Absidia corymbifera VKMF-965 account for about 20% by weight of dry cells and are composed of low-polarity constituents (about 75% of the total lipids), such as triacylglycerols (mainly), diacylglycerols, sterols and free fatty acids, as well as of glycolipids (about 3%) and phospholipids. The last consist largely of components common to the fungal lipids, namely, phosphatidylethanolamine (38% of the total phospholipids), phosphatidyl-myo-inositol (16%), diphosphatidylglycerol (12%), phosphatidylcholine (7%), phosphatidic acid (6%) and phosphatidylglycerol (3%), and two unusual phospholipids, PL1 (6%) and PL2 (9%). Based on the infrared (IR), (1)H-nuclear magnetic resonance (NMR), (13)C-NMR and mass spectra along with the results of degradation experiment, these two phospholipids have been established to be 1,2-diacyl-sn-glycero-3-phospho(N-acetylethanolamine), or N-acetyl phosphatidylethanolamine, and 1,2-diacyl-sn-glycero-3-phospho(N-ethoxycarbonyl-ethanolamine), respectively. These structures have been confirmed by preparing similar phospholipids from the phosphatidylethanolamine isolated from the same fungus and correlating their chromatographic behaviour, IR and (1)H-NMR spectra with those of PL1 and PL2. So far N-acetyl phosphatidylethanolamine has been detected only in cattle and human brains and a human placenta but its structure was not rigorously proved. PL2 is a novel lipid; to our knowledge no natural phospholipid with an urethane group has yet been found. The main fatty acids of both the phospholipids are n-hexadecanoic, octadecanoic and octadecadienoic ones; PL2 contains in addition a considerable amount of octadecatrienoic acid with its greater portion located at the sn-1 position.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Absidia
/
Glicerofosfolípidos
Idioma:
En
Revista:
Biochim Biophys Acta
Año:
2001
Tipo del documento:
Article
País de afiliación:
Rusia
Pais de publicación:
Países Bajos