Your browser doesn't support javascript.
loading
Episodic ocean-induced CO2 greenhouse on Mars: implications for fluvial valley formation.
Gulick, V C; Tyler, D; McKay, C P; Haberle, R M.
Afiliación
  • Gulick VC; Space Science Division, NASA-Ames Research Center, Moffett Field, California 94035, USA. gulick@barsoom.arc.nasa.gov
Icarus ; 130(1): 68-86, 1997 Nov.
Article en En | MEDLINE | ID: mdl-11541758
ABSTRACT
Pulses of CO2 injected into the martian atmosphere more recently than 4 Ga can place the atmosphere into a stable, higher pressure, warmer greenhouse state. One to two bar pulses of CO2 added to the atmosphere during the past several billion years are sufficient to raise global mean temperatures above 240 or 250 K for tens to hundreds of millions of years, even when accounting for CO2 condensation. Over time, the added CO2 is lost to carbonates, the atmosphere collapses and returns to its buffered state. A substantial amount of water could be transported during the greenhouse periods from the surface of a frozen body of water created by outflow channel discharges to higher elevations, despite global temperatures well below freezing. This water, precipitated as snow, could ultimately form fluvial valleys if deposition sites are associated with localized heat sources, such as magmatic intrusions or volcanoes. Thus, if outflow channel discharges were accompanied by the release of sufficient quantities of CO2, a limited hydrological cycle could have resulted that would have been capable of producing geomorphic change sufficient for fluvial erosion and valley formation. Glacial or periglacial landforms would also be a consequence of such a mechanism.
Asunto(s)
Palabras clave
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Atmósfera / Agua de Mar / Dióxido de Carbono / Marte / Evolución Planetaria / Modelos Químicos Idioma: En Revista: Icarus Año: 1997 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Atmósfera / Agua de Mar / Dióxido de Carbono / Marte / Evolución Planetaria / Modelos Químicos Idioma: En Revista: Icarus Año: 1997 Tipo del documento: Article País de afiliación: Estados Unidos