Gaseous contaminant emissions as affected by burning scrap tires in cement manufacturing.
J Environ Qual
; 31(5): 1484-90, 2002.
Article
en En
| MEDLINE
| ID: mdl-12371165
We studied the environmental impact (gaseous emissions) of using scrap tires as a fuel substitute at a cement plant that produces one million tons of cement per year. Using a combination of tires and coal as opposed to only coal caused variations in the pollutant emission rate. The study recorded a 37% increase in the rate of emission for CO, a 24% increase for SO2, an 11% decrease for NOx, and a 48% increase for HCl when tires were included. The rate of emission for metals increased 61% for Fe, 33% for Al, 487% for Zn, 127% for Pb, 339% for Cr, 100% for Mn, and 74% for Cu, and decreased 22% for Hg. On the other hand, the emission rate of organic compounds dropped by 14% for polycyclic aromatic hydrocarbons, 8% in naphthalene, 37% in chlorobenzene, and 45% in dioxins and furans. We used a Gaussian model of atmospheric dispersion to calculate the average pollutant concentration (1-h, 24-h, and annual concentrations) in the ambient air at ground level with the help of the ISC-ST2 software program developed by the USEPA. When tires were used, we observed (i) a 12 to 24% increase in particulate matter, this range considering the concentration variation depending on the average used (1-h, 24-h, and annual basis), 31 to 52% in CO, 22 to 34% in SO2, 39 to 52% in HCl, 12 to 27% in Fe, -3 to 8% in Al, 30 to 37% in Zn, and 270 to 885% in Pb; (ii) a decrease of 8 to 13% in NOx, 9 to 13% in polycyclic aromatic hydrocarbons, 6 to 7% in naphthalene, 32 to 39% in chlorobenzene, and 32 to 45% in dioxins and furans. The results obtained showed that the maximum ground-level concentrations were well within the environmental standards (for operation with only coal as well as for operation with a combination of coal and tires).
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Eliminación de Residuos
/
Conservación de los Recursos Naturales
/
Contaminantes Atmosféricos
/
Materiales Manufacturados
Idioma:
En
Revista:
J Environ Qual
Año:
2002
Tipo del documento:
Article
País de afiliación:
España
Pais de publicación:
Estados Unidos