Predicting protein function from protein/protein interaction data: a probabilistic approach.
Bioinformatics
; 19 Suppl 1: i197-204, 2003.
Article
en En
| MEDLINE
| ID: mdl-12855458
MOTIVATION: The development of experimental methods for genome scale analysis of molecular interaction networks has made possible new approaches to inferring protein function. This paper describes a method of assigning functions based on a probabilistic analysis of graph neighborhoods in a protein-protein interaction network. The method exploits the fact that graph neighbors are more likely to share functions than nodes which are not neighbors. A binomial model of local neighbor function labeling probability is combined with a Markov random field propagation algorithm to assign function probabilities for proteins in the network. RESULTS: We applied the method to a protein-protein interaction dataset for the yeast Saccharomyces cerevisiae using the Gene Ontology (GO) terms as function labels. The method reconstructed known GO term assignments with high precision, and produced putative GO assignments to 320 proteins that currently lack GO annotation, which represents about 10% of the unlabeled proteins in S. cerevisiae.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Saccharomyces cerevisiae
/
Algoritmos
/
Proteínas de Saccharomyces cerevisiae
/
Mapeo de Interacción de Proteínas
/
Bases de Datos de Proteínas
/
Modelos Biológicos
Tipo de estudio:
Evaluation_studies
/
Prognostic_studies
Idioma:
En
Revista:
Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2003
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido