Unified model and reverse recovery nonlinearities of the driven diode resonator.
Phys Rev E Stat Nonlin Soft Matter Phys
; 68(2 Pt 2): 026201, 2003 Aug.
Article
en En
| MEDLINE
| ID: mdl-14525078
We study the origins of period doubling and chaos in the driven series resistor-inductor-varactor diode (RLD) nonlinear resonant circuit. We find that resonators driven at frequencies much higher than the diode reverse recovery rate do not show period doubling. Models of chaos based on the nonlinear capacitance of the varactor diode display a reverse-recovery-like effect, and this effect strongly resembles reverse recovery of real diodes. We find for the first time that in addition to the known dependence of the reverse recovery time on past current maxima, there are also important nonlinear dependencies on pulse frequency, duty cycle, and dc voltage bias. Similar nonlinearities are present in the nonlinear capacitance models of these diodes. We conclude that a history-dependent and nonlinear reverse-recovery time is an essential ingredient for chaotic behavior of this circuit, and demonstrate for the first time that all major competing models have this effect, either explicitly or implicitly. Besides unifying the two major models of RLD chaos, our work reveals that the nonlinearities of the reverse-recovery time must be included for a complete understanding of period doubling and chaos in this circuit.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Phys Rev E Stat Nonlin Soft Matter Phys
Asunto de la revista:
BIOFISICA
/
FISIOLOGIA
Año:
2003
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos