Mapping complex traits using Random Forests.
BMC Genet
; 4 Suppl 1: S64, 2003 Dec 31.
Article
en En
| MEDLINE
| ID: mdl-14975132
Random Forest is a prediction technique based on growing trees on bootstrap samples of data, in conjunction with a random selection of explanatory variables to define the best split at each node. In the case of a quantitative outcome, the tree predictor takes on a numerical value. We applied Random Forest to the first replicate of the Genetic Analysis Workshop 13 simulated data set, with the sibling pairs as our units of analysis and identity by descent (IBD) at selected loci as our explanatory variables. With the knowledge of the true model, we performed two sets of analyses on three phenotypes: HDL, triglycerides, and glucose. The goal was to approach the mapping of complex traits from a multivariate perspective. The first set of analyses mimics a candidate gene approach with a high proportion of true genes among the predictors while the second set represents a genome scan analysis using microsatellite markers. Random Forest was able to identify a few of the major genes influencing the phenotypes, such as baseline HDL and triglycerides, but failed to identify the major genes regulating baseline glucose levels.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Linaje
/
Mapeo Cromosómico
/
Carácter Cuantitativo Heredable
/
Herencia Multifactorial
/
Sitios de Carácter Cuantitativo
Tipo de estudio:
Clinical_trials
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
BMC Genet
Asunto de la revista:
BIOLOGIA MOLECULAR
/
BIOTECNOLOGIA
Año:
2003
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido