Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types.
Tree Physiol
; 24(8): 919-28, 2004 Aug.
Article
en En
| MEDLINE
| ID: mdl-15172842
We used concurrent measurements of soil water content and soil water potential (Psi(soil)) to assess the effects of Psi(soil) on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles at six sites characterized by differences in the types and amounts of woody vegetation and in climate. The six sites included a semi-arid old-growth ponderosa pine (Pinus ponderosa Dougl. ex P. Laws & C. Laws) forest, a moist old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forest, a 24-year-old Douglas-fir forest and three Brazilian savanna sites differing in tree density. At all of the sites, HR was confined largely to the upper 60 cm of soil. There was a common threshold relationship between the relative magnitude of HR and Psi(soil) among the six study sites. Below a threshold Psi(soil) of about -0.4 MPa, overnight recharge of soil water storage increased sharply, and reached a maximum value of 80-90% over a range of Psi(soil) from ~ -1.2 to -1.5 MPa. Although amounts of water hydraulically redistributed to the upper 60 cm of soil were relatively small (0 to 0.4 mm day(-1)), they greatly reduced the rates of seasonal decline in Psi(soil). The effectiveness of HR in delaying soil drying diminished with increasing sapwood area per ground area. The relationship between soil water utilization and Psi(soil) in the 20-60-cm layer was nearly identical for all six sites. Soil water utilization varied with a surrogate measure of rhizosphere conductance in a similar manner at all six sites. The similarities in relationships between Psi(soil) and HR, soil water utilization and relative rhizosphere conductance among the six sites, suggests that, despite probable differences in maximum rooting depth and density, there was a convergence in biophysical controls on soil water utilization and redistribution in the upper soil layers where the density of finer roots is greatest.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Árboles
Idioma:
En
Revista:
Tree Physiol
Asunto de la revista:
BOTANICA
/
FISIOLOGIA
Año:
2004
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Canadá