Your browser doesn't support javascript.
loading
Automatic segmentation of histological structures in mammary gland tissue sections.
Fernandez-Gonzalez, R; Deschamps, T; Idica, A; Malladi, R; Ortiz de Solorzano, C.
Afiliación
  • Fernandez-Gonzalez R; Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Road, Building 84, MS 84-171, Berkeley, California 94720, USA.
J Biomed Opt ; 9(3): 444-53, 2004.
Article en En | MEDLINE | ID: mdl-15189081
Real-time three-dimensional (3-D) reconstruction of epithelial structures in human mammary gland tissue blocks mapped with selected markers would be an extremely helpful tool for diagnosing breast cancer and planning treatment. Besides its clear clinical application, this tool could also shed a great deal of light on the molecular basis of the initiation and progression of breast cancer. We present a framework for real-time segmentation of epithelial structures in two-dimensional (2-D) images of sections of normal and neoplastic mammary gland tissue blocks. Complete 3-D rendering of the tissue can then be done by surface rendering of the structures detected in consecutive sections of the blocks. Paraffin-embedded or frozen tissue blocks are first sliced and sections are stained with hematoxylin and eosin. The sections are then imaged using conventional bright-field microscopy and their background corrected using a phantom image. We then use the fast-marching algorithm to roughly extract the contours of the different morphological structures in the images. The result is then refined with the level-set method, which converges to an accurate (subpixel) solution for the segmentation problem. Finally, our system stacks together the 2-D results obtained in order to reconstruct a 3-D representation of the entire tissue block under study. Our method is illustrated with results from the segmentation of human and mouse mammary gland tissue samples.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Neoplasias de la Mama / Interpretación de Imagen Asistida por Computador / Anatomía Transversal / Imagenología Tridimensional / Glándulas Mamarias Humanas Tipo de estudio: Evaluation_studies Límite: Animals / Humans Idioma: En Revista: J Biomed Opt Asunto de la revista: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Año: 2004 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Neoplasias de la Mama / Interpretación de Imagen Asistida por Computador / Anatomía Transversal / Imagenología Tridimensional / Glándulas Mamarias Humanas Tipo de estudio: Evaluation_studies Límite: Animals / Humans Idioma: En Revista: J Biomed Opt Asunto de la revista: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Año: 2004 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos