Modeling deoxyribose radicals by neutralization-reionization mass spectrometry. Part 2. Preparation, dissociations, and energetics of 3-hydroxyoxolan-3-yl radical and cation.
J Am Soc Mass Spectrom
; 15(7): 1068-79, 2004 Jul.
Article
en En
| MEDLINE
| ID: mdl-15234365
The title radical (1) is generated in the gas-phase by collisional neutralization of carbonyl-protonated oxolan-3-one. A 1.5% fraction of 1 does not dissociate and is detected following reionization as survivor ions. The major dissociation of 1 (approximately 56%) occurs as loss of the hydroxyl H atom forming oxolan-3-one (2). The competing ring cleavages by O[bond]C-2 and C-4[bond]C-5 bond dissociations combined account for approximately 42% of dissociation and result in the formation of formaldehyde and 2-hydroxyallyl radical. Additional ring-cleavage dissociations of 1 resulting in the formation of C(2)H(3)O and C(2)H(4)O cannot be explained as occurring competitively on the doublet ground (X) electronic state of 1, but are energetically accessible from the A and higher electronic states accessed by vertical electron transfer. Exothermic protonation of 2 also produces 3-oxo-(1H)-oxolanium cation (3(+)) which upon collisional neutralization gives hypervalent 3-oxo-(1H)-oxolanium radical (3). The latter dissociates spontaneously by ring opening and expulsion of hydroxy radical. Experiment and calculations suggest that carbohydrate radicals incorporating the 3-hydroxyoxolan-3-yl motif will prefer ring-cleavage dissociations at low internal energies or upon photoexcitation by absorbing light at approximately 590 and approximately 400 nm.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Espectrometría de Masas
/
Desoxirribosa
/
Modelos Químicos
Tipo de estudio:
Evaluation_studies
Idioma:
En
Revista:
J Am Soc Mass Spectrom
Año:
2004
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos