Vesicle membrane interactions of penetratin analogues.
Biochemistry
; 43(34): 11045-55, 2004 Aug 31.
Article
en En
| MEDLINE
| ID: mdl-15323563
Reports on serious artifacts associated with the use of cell fixation in studies of the cellular uptake of cell-penetrating peptides, also denoted protein transduction domains, have demonstrated the need for a reevaluation of the current understanding of peptide-mediated cellular delivery of large, hydrophilic molecules. In a recent study on the internalization in unfixed cells of penetratin and its analogues in which tryptophans are substituted for phenylalanines (Pen2W2F), lysines for arginines (PenArg), and arginines for lysines (PenLys), we revealed large dissimilarities in cell interactions among the peptides [Thorén et al. (2003) Biochem. Biophys. Res. Commun. 307, 100-107]. We here investigated possible correlations with their respective affinities for the lipid membranes of large unilamellar vesicles. The variations found in membrane affinity correlated qualitatively with differences in hydrophobicity among the peptides but were by far too small to account for the striking differences in cell membrane binding. Interestingly, we found that the inclusion of a small fraction of lipids conjugated to poly(ethylene glycol) (PEG) in the vesicles both stabilized the vesicle dispersion against peptide-induced aggregation and, furthermore, enhanced the binding of the peptides to the membrane. By use of PEG-conjugated lipids, it could be shown that vesicle aggregation drives an alpha-helix to beta-sheet conformational transition for these peptides. A similar transition was discovered at submicellar concentrations of sodium dodecyl sulfate in aqueous solution for all peptides except PenLys. Finally, significant changes of the contributions to CD spectra from aromatic residues due to their insertion into the membrane were observed.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Fragmentos de Péptidos
/
Proteínas Portadoras
/
Liposomas
Límite:
Animals
Idioma:
En
Revista:
Biochemistry
Año:
2004
Tipo del documento:
Article
País de afiliación:
Suecia
Pais de publicación:
Estados Unidos