Contextual processing of structured data by recursive cascade correlation.
IEEE Trans Neural Netw
; 15(6): 1396-410, 2004 Nov.
Article
en En
| MEDLINE
| ID: mdl-15565768
This paper propose a first approach to deal with contextual information in structured domains by recursive neural networks. The proposed model, i.e., contextual recursive cascade correlation (CRCC), a generalization of the recursive cascade correlation (RCC) model, is able to partially remove the causality assumption by exploiting contextual information stored in frozen units. We formally characterize the properties of CRCC showing that it is able to compute contextual transductions and also some causal supersource transductions that RCC cannot compute. Experimental results on controlled sequences and on a real-world task involving chemical structures confirm the computational limitations of RCC, while assessing the efficiency and efficacy of CRCC in dealing both with pure causal and contextual prediction tasks. Moreover, results obtained for the real-world task show the superiority of the proposed approach versus RCC when exploring a task for which it is not known whether the structural causality assumption holds.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Reconocimiento de Normas Patrones Automatizadas
/
Modelos Logísticos
/
Almacenamiento y Recuperación de la Información
/
Técnicas de Apoyo para la Decisión
/
Redes Neurales de la Computación
/
Retroalimentación
Tipo de estudio:
Evaluation_studies
/
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
IEEE Trans Neural Netw
Asunto de la revista:
INFORMATICA MEDICA
Año:
2004
Tipo del documento:
Article
País de afiliación:
Italia
Pais de publicación:
Estados Unidos