What is a proof?
Philos Trans A Math Phys Eng Sci
; 363(1835): 2377-88; discussion 2388-91, 2005 Oct 15.
Article
en En
| MEDLINE
| ID: mdl-16188611
To those brought up in a logic-based tradition there seems to be a simple and clear definition of proof. But this is largely a twentieth century invention; many earlier proofs had a different nature. We will look particularly at the faulty proof of Euler's Theorem and Lakatos' rational reconstruction of the history of this proof. We will ask: how is it possible for the errors in a faulty proof to remain undetected for several years-even when counter-examples to it are known? How is it possible to have a proof about concepts that are only partially defined? And can we give a logic-based account of such phenomena? We introduce the concept of schematic proofs and argue that they offer a possible cognitive model for the human construction of proofs in mathematics. In particular, we show how they can account for persistent errors in proofs.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Cómputos Matemáticos
/
Análisis Numérico Asistido por Computador
/
Validación de Programas de Computación
/
Programas Informáticos
/
Cultura
/
Modelos Teóricos
Tipo de estudio:
Prognostic_studies
Aspecto:
Determinantes_sociais_saude
Idioma:
En
Revista:
Philos Trans A Math Phys Eng Sci
Asunto de la revista:
BIOFISICA
/
ENGENHARIA BIOMEDICA
Año:
2005
Tipo del documento:
Article
Pais de publicación:
Reino Unido