Your browser doesn't support javascript.
loading
Confocal microprobe Raman imaging of urban tropospheric aerosol particles.
Batonneau, Yann; Sobanska, Sophie; Laureyns, Jacky; Bremard, Claude.
Afiliación
  • Batonneau Y; Laboratoire de Catalyse en Chimie Organique UMR-CNRS 6503, University of Poitiers, 40, Avenue du Recteur Pineau, F-86022 Poitiers Cedex, France.
Environ Sci Technol ; 40(4): 1300-6, 2006 Feb 15.
Article en En | MEDLINE | ID: mdl-16572789
Particulate matter with aerodynamic diameters of < 1, 1-2.5, and 2.5-10 microm were collected during two seasons in two urban zones situated northeast and southwest, respectively, of a lead/zinc smelter located in a former mining region of northern France. We demonstrate the effectiveness of the combined use of computer-controlled Raman mapping and multivariate curve resolution (MCR) of the Raman images to determine heterogeneous chemistry at the level of aerosol particle. The resulting molecular images of major species were found to be in accurate agreement with elemental images obtained by WDS X-ray-mapping. Environmental SEM was very useful to localize spare metal-rich particles before Raman mapping. Some spare particles containing pyromorphite (Pb5(PO4)3OH) and franklinite (ZnxFe3-xO4) mixed with mineral dust were detected at the northeast (NE) sampling site, when the wind was blowing from the west (W) sector. These particles were probably suspended in the troposphere by the action of wind or by mechanical disturbance of polluted top soils. The most abundantly encountered particles in the 10-2.5 and 2.5-1 microm fractions were found to be aggregates of NaCl, CaCO3, CaSO4 x 2H2O, CaMg(CO3)2, SiO2, feldspar, clay minerals, alpha-Fe2O3, NaNO3, and Ca(NO3)2 x 4H20. Black carbon and (NH4)2SO4 particles were observed predominantly in the finest fraction. It was not rare to detect Pb and Zn-rich particles in the 10-2.5 and 2.5-1 microm fractions collected at the southwest (SW) sampling site, when the wind was blowing from the NE sector. Most of these mixed particles probably result from the aggregation between PbSO4, PbO x PbSO4, and ZnS particles emitted by the smelters and hydroscopic mineral dust during transport in the troposphere.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Contaminantes Atmosféricos País/Región como asunto: Europa Idioma: En Revista: Environ Sci Technol Año: 2006 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Contaminantes Atmosféricos País/Región como asunto: Europa Idioma: En Revista: Environ Sci Technol Año: 2006 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos