Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia.
Blood
; 108(7): 2182-9, 2006 Oct 01.
Article
en En
| MEDLINE
| ID: mdl-16804117
Severe congenital neutropenia (SCN) is characterized by neutropenia, recurrent bacterial infections, and maturation arrest in the bone marrow. Although many cases have mutations in the ELA2 gene encoding neutrophil elastase, a significant proportion remain undefined at a molecular level. A mutation (Leu270Pro) in the gene encoding the Wiskott-Aldrich syndrome protein (WASp) resulting in an X-linked SCN kindred has been reported. We therefore screened the WAS gene in 14 young SCN males with wild-type ELA2 and identified 2 with novel mutations, one who presented with myelodysplasia (Ile294Thr) and the other with classic SCN (Ser270Pro). Both patients had defects of immunologic function including a generalized reduction of lymphoid and natural killer cell numbers, reduced lymphocyte proliferation, and abrogated phagocyte activity. In vitro culture of bone marrow progenitors demonstrated a profound reduction in neutrophil production and increased levels of apoptosis, consistent with an intrinsic disturbance of normal myeloid differentiation as the cause of the neutropenia. Both mutations resulted in increased WASp activity and produced marked abnormalities of cytoskeletal structure and dynamics. Furthermore, these results also suggest a novel cause of myelodysplasia and that male children with myelodysplasia and disturbance of immunologic function should be screened for such mutations.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Proteína del Síndrome de Wiskott-Aldrich
/
Mutación
/
Neutropenia
Límite:
Animals
/
Child
/
Child, preschool
/
Humans
/
Male
Idioma:
En
Revista:
Blood
Año:
2006
Tipo del documento:
Article
País de afiliación:
Reino Unido
Pais de publicación:
Estados Unidos