Your browser doesn't support javascript.
loading
Concerning the differentiability of the energy function in vector quantization algorithms.
Lepetz, Dominique; Némoz-Gaillard, Max; Aupetit, Michaël.
Afiliación
  • Lepetz D; EMA-DM, 6 Av. de Clavières, 30319 Alès cedex, France.
Neural Netw ; 20(5): 621-30, 2007 Jul.
Article en En | MEDLINE | ID: mdl-17416485
The adaptation rule of Vector Quantization algorithms, and consequently the convergence of the generated sequence, depends on the existence and properties of a function called the energy function, defined on a topological manifold. Our aim is to investigate the conditions of existence of such a function for a class of algorithms including the well-known 'K-means' and 'Self-Organizing Map' algorithms. The results presented here extend several previous studies and show that the energy function is not always a potential but at least the uniform limit of a series of potential functions which we call a pseudo-potential. It also shows that a large number of existing vector quantization algorithms developed by the Artificial Neural Networks community fall into this class. The framework we define opens the way to studying the convergence of all the corresponding adaptation rules at once, and a theorem gives promising insights in that direction.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Señales Asistido por Computador / Redes Neurales de la Computación / Dinámicas no Lineales / Aprendizaje Límite: Humans Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2007 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Señales Asistido por Computador / Redes Neurales de la Computación / Dinámicas no Lineales / Aprendizaje Límite: Humans Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2007 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos