Your browser doesn't support javascript.
loading
Numerical simulation of ultrasonic wave propagation in anisotropic and attenuative solid materials.
You, Z; Lusk, M; Ludwig, R; Lord, W.
Afiliación
  • You Z; Dept. of Electr. and Comput. Eng., Iowa State Univ., Ames, IA.
Article en En | MEDLINE | ID: mdl-18267605
The axisymmetric elastodynamic finite element code developed is capable of predicting quantitatively accurate displacement fields for elastic wave propagation in isotropic and transversely isotropic materials. The numerical algorithm incorporates viscous damping by adding a time-dependent tensor to Hooke's law. Amplitude comparisons are made between the geometric attenuation in the far field and the corresponding finite element predictions to investigate the quality and validity of the code. Through-transmission experimental measurements made with a 1 MHz L-wave transducer attached to an aluminum sample support the code predictions. The algorithm successfully models geometric beam spreading dispersion and energy absorption due to viscous damping. This numerical model is a viable tool for the study of elastic wave propagation in nondestructive testing applications.
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: IEEE Trans Ultrason Ferroelectr Freq Control Asunto de la revista: MEDICINA NUCLEAR Año: 1991 Tipo del documento: Article Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: IEEE Trans Ultrason Ferroelectr Freq Control Asunto de la revista: MEDICINA NUCLEAR Año: 1991 Tipo del documento: Article Pais de publicación: Estados Unidos