Your browser doesn't support javascript.
loading
An in vitro biomechanical comparison of a 5.5 mm limited-contact dynamic compression plate fixation with a 4.5 mm limited-contact dynamic compression plate fixation of osteotomized equine third metacarpal bones.
Sod, Gary A; Mitchell, Colin F; Hubert, Jeremy D; Martin, George S; Gill, Marjorie S.
Afiliación
  • Sod GA; Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA. gsod@vetmed.lsu.edu
Vet Surg ; 37(3): 289-93, 2008 Apr.
Article en En | MEDLINE | ID: mdl-18394077
OBJECTIVES: To compare monotonic biomechanical properties and fatigue life of a 5.5 mm broad limited-contact dynamic compression plate (5.5-LC-DCP) fixation with a 4.5 mm broad LC-DCP (4.5-LC-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. SAMPLE POPULATION: Adult equine cadaveric MC3 bones (n=18 pair). METHODS: MC3 were divided into 3 test groups (6 pairs each) for: (1) 4-point bending single cycle to failure testing; (2) 4-point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8-hole, 5.5 mm broad LC-DCP (5.5-LC-DCP) was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8-hole, 4.5 mm broad LC-DCP (4.5-LC-DCP) was applied dorsally to the contralateral bone from each pair. Plates and screws were applied using standard ASIF techniques. All MC3 bones had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment under 4-point bending, single cycle to failure, of the 5.5-LC-DCP fixation were significantly greater (P<.024) than those of the 4.5-LC-DCP fixation. Mean cycles to failure for 4-point bending was significantly (P<.05) greater for the 4.5-LC-DCP fixation compared with the 5.5-LC-DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion for the 5.5-LC-DCP fixation was not significantly different (P>.05) than those with the 4.5-LC-DCP fixation. CONCLUSION: 5.5-LC-DCP fixation was superior to 4.5-LC-DCP fixation in resisting the static overload forces under palmarodorsal 4-point bending. There was no significant difference between 5.5-LC-DCP fixation and 4.5-LC-DCP fixation in resisting static overload forces under torsion; however, the 5.5-LC-DCP offers significantly less stability (80% of that of the 4.5-LC-DCP) in cyclic fatigue testing. CLINICAL RELEVANCE: The results of this in vitro study may provide information to aid in the selection of a biological plate for long bone fracture repair in horses.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Placas Óseas / Fijadores Internos / Fuerza Compresiva / Huesos del Metacarpo / Fijación Interna de Fracturas Límite: Animals Idioma: En Revista: Vet Surg Año: 2008 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Placas Óseas / Fijadores Internos / Fuerza Compresiva / Huesos del Metacarpo / Fijación Interna de Fracturas Límite: Animals Idioma: En Revista: Vet Surg Año: 2008 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos