Inflationary dynamics for matrix eigenvalue problems.
Proc Natl Acad Sci U S A
; 105(22): 7631-5, 2008 Jun 03.
Article
en En
| MEDLINE
| ID: mdl-18511564
Many fields of science and engineering require finding eigenvalues and eigenvectors of large matrices. The solutions can represent oscillatory modes of a bridge, a violin, the disposition of electrons around an atom or molecule, the acoustic modes of a concert hall, or hundreds of other physical quantities. Often only the few eigenpairs with the lowest or highest frequency (extremal solutions) are needed. Methods that have been developed over the past 60 years to solve such problems include the Lanczos algorithm, Jacobi-Davidson techniques, and the conjugate gradient method. Here, we present a way to solve the extremal eigenvalue/eigenvector problem, turning it into a nonlinear classical mechanical system with a modified Lagrangian constraint. The constraint induces exponential inflationary growth of the desired extremal solutions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Año:
2008
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos