Your browser doesn't support javascript.
loading
Inflationary dynamics for matrix eigenvalue problems.
Heller, Eric J; Kaplan, Lev; Pollmann, Frank.
Afiliación
  • Heller EJ; Departments of Physics and Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. heller@physics.harvard.edu
Proc Natl Acad Sci U S A ; 105(22): 7631-5, 2008 Jun 03.
Article en En | MEDLINE | ID: mdl-18511564
Many fields of science and engineering require finding eigenvalues and eigenvectors of large matrices. The solutions can represent oscillatory modes of a bridge, a violin, the disposition of electrons around an atom or molecule, the acoustic modes of a concert hall, or hundreds of other physical quantities. Often only the few eigenpairs with the lowest or highest frequency (extremal solutions) are needed. Methods that have been developed over the past 60 years to solve such problems include the Lanczos algorithm, Jacobi-Davidson techniques, and the conjugate gradient method. Here, we present a way to solve the extremal eigenvalue/eigenvector problem, turning it into a nonlinear classical mechanical system with a modified Lagrangian constraint. The constraint induces exponential inflationary growth of the desired extremal solutions.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2008 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2008 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos