Leishmania adaptor protein-1 subunits are required for normal lysosome traffic, flagellum biogenesis, lipid homeostasis, and adaptation to temperatures encountered in the mammalian host.
Eukaryot Cell
; 7(8): 1256-67, 2008 Aug.
Article
en En
| MEDLINE
| ID: mdl-18515754
The adaptor protein-1 (AP-1) complex is involved in membrane transport between the Golgi apparatus and endosomes. In the protozoan parasite Leishmania mexicana mexicana, the AP-1 mu1 and sigma1 subunits are not required for growth at 27 degrees C but are essential for infectivity in the mammalian host. In this study, we have investigated the function of these AP-1 subunits in order to understand the molecular basis for this loss of virulence. The mu1 and sigma1 subunits were localized to late Golgi and endosome membranes of the major parasite stages. Parasite mutants lacking either AP-1 subunit lacked obvious defects in Golgi structure, endocytosis, or exocytic transport. However, these mutants displayed reduced rates of endosome-to-lysosome transport and accumulated fragmented, sterol-rich lysosomes. Defects in flagellum biogenesis were also evident in nondividing promastigote stages, and this phenotype was exacerbated by inhibitors of sterol and sphingolipid biosynthesis. Furthermore, both AP-1 mutants were hypersensitive to elevated temperature and perturbations in membrane lipid composition. The pleiotropic requirements for AP-1 in membrane trafficking and temperature stress responses explain the loss of virulence of these mutants in the mammalian host.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Leishmania mexicana
/
Complejo 1 de Proteína Adaptadora
/
Metabolismo de los Lípidos
/
Flagelos
/
Interacciones Huésped-Parásitos
/
Lisosomas
Límite:
Animals
Idioma:
En
Revista:
Eukaryot Cell
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2008
Tipo del documento:
Article
País de afiliación:
Australia
Pais de publicación:
Estados Unidos