Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance.
Inhal Toxicol
; 21(2): 102-18, 2009 Feb.
Article
en En
| MEDLINE
| ID: mdl-18800274
Evidence suggests that short-term inhalation studies may provide comparable prediction of respiratory tract toxicity to 90-day studies, presenting the opportunity to save time and resources in screening inhalation toxicity of test substances. The aim of this study was to develop a short-term inhalation test that could be employed to provide early evidence on respiratory tract effects which might occur from long-term exposure to aerosols of nano-materials. Male Wistar rats were exposed to aerosols of 0 (control), 2, 10 and 50 mg/m(3) nano-titanium dioxide (TiO2) by inhalation for 6 h/day for 5 days. Necropsies were performed either immediately after the last exposure or after 3 and 16 days post exposure (study days 5, 8 and 21, respectively). Treatment with nano-TiO2 resulted in morphological changes in the lung, with 50 mg/m(3) nano-TiO2 producing an increase in lung weight. Lung inflammation was associated with dose-dependent increases in bronchoalveolar lavage fluid (BALF) total cell and neutrophil counts, total protein content, enzyme activities and levels of a number of cell mediators. No indications of systemic effects could be found by measurement of appropriate clinical pathology parameters. Cell replication (determined by incorporation of 5-bromo-2'-deoxyuridine) was increased at all nano-TiO2 dose levels in large/medium bronchi and terminal bronchioles. The effects on the parameters measured were most prominent either on study day 5 or 8, with some endpoints returning to control levels by day 21. Overall, the pulmonary effects of nano-TiO2 observed in this short-term study were comparable to those previously reported in subchronic inhalation studies.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Neumonía
/
Titanio
/
Exposición por Inhalación
/
Pruebas de Toxicidad Crónica
/
Nanopartículas
/
Pulmón
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Inhal Toxicol
Asunto de la revista:
TOXICOLOGIA
Año:
2009
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Reino Unido