Your browser doesn't support javascript.
loading
Ultraviolet-visible spectral analysis for the reaction of hydrogen peroxide with a titanium(IV)-porphyrin reagent.
Takamura, Kiyoko; Matsumoto, Takatoshi.
Afiliación
  • Takamura K; Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan. takamura@toyaku.ac.jp
Appl Spectrosc ; 63(5): 579-84, 2009 May.
Article en En | MEDLINE | ID: mdl-19470217
ABSTRACT
A Ti-TPyP reagent, i.e., an acidic aqueous solution of oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV) complex, TiO(tpyp), was developed as a highly sensitive and selective spectrophotometric reagent for the determination of traces of hydrogen peroxide. The reagent exhibited a single absorption peak at 432 nm, and the addition of hydrogen peroxide to the reagent gave rise to a new peak at 450 nm, with height being proportional to the added hydrogen peroxide concentration. Recently we succeeded in clarifying the reaction specificity of the TiO(tpyp) complex to hydrogen peroxide from the viewpoint of the reaction mechanisms and molecular orbitals based on ab initio calculations. In the present study, we performed ultraviolet-visible (UV-Vis) spectral simulations for individual species in the proposed reaction mechanisms based on the theoretical calculations carried out using the Zerner's intermediate neglect of differential overlap (ZINDO) method, since the assignment of the observed absorption peaks to the respective reaction species is important to confirm the reliability of the analysis of hydrogen peroxide using the Ti-TPyP reagent. The absorption peaks at 432 nm and 450 nm were assigned to a H(2)O-adduct structure of the protonated TiO(tpyp) complex and the important structure corresponding to the monoperoxo TiO(tpyp) complex, respectively, under acidic conditions. Particularly, it should be noted that the addition of water molecules to the protonated TiO(tpyp) complex affects the maximum absorption wavelength appreciably. Taking the addition of water molecules to the complex into consideration, the reaction mechanism proposed previously was revised in this study. The results should contribute to providing a new way to evaluate analytical reagents.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrofotometría / Peróxido de Hidrógeno / Metaloporfirinas Idioma: En Revista: Appl Spectrosc Año: 2009 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Espectrofotometría / Peróxido de Hidrógeno / Metaloporfirinas Idioma: En Revista: Appl Spectrosc Año: 2009 Tipo del documento: Article País de afiliación: Japón