Your browser doesn't support javascript.
loading
CYP86B1 is required for very long chain omega-hydroxyacid and alpha, omega -dicarboxylic acid synthesis in root and seed suberin polyester.
Compagnon, Vincent; Diehl, Patrik; Benveniste, Irène; Meyer, Denise; Schaller, Hubert; Schreiber, Lukas; Franke, Rochus; Pinot, Franck.
Afiliación
  • Compagnon V; Institut de Biologie Moléculaire des Plantes, CNRS-Université Louis Pasteur Unité Propre de Recherche 2357, Département Réseaux Métaboliques Végétaux, F-67083 Strasbourg cedex, France.
Plant Physiol ; 150(4): 1831-43, 2009 Aug.
Article en En | MEDLINE | ID: mdl-19525321
ABSTRACT
Suberin composition of various plants including Arabidopsis (Arabidopsis thaliana) has shown the presence of very long chain fatty acid derivatives C20 in addition to the C16 and C18 series. Phylogenetic studies and plant genome mining have led to the identification of putative aliphatic hydroxylases belonging to the CYP86B subfamily of cytochrome P450 monooxygenases. In Arabidopsis, this subfamily is represented by CYP86B1 and CYP86B2, which share about 45% identity with CYP86A1, a fatty acid omega-hydroxylase implicated in root suberin monomer synthesis. Here, we show that CYP86B1 is located to the endoplasmic reticulum and is highly expressed in roots. Indeed, CYP86B1 promoter-driven beta-glucuronidase expression indicated strong reporter activities at known sites of suberin production such as the endodermis. These observations, together with the fact that proteins of the CYP86B type are widespread among plant species, suggested a role of CYP86B1 in suberin biogenesis. To investigate the involvement of CYP86B1 in suberin biogenesis, we characterized an allelic series of cyp86B1 mutants of which two strong alleles were knockouts and two weak ones were RNA interference-silenced lines. These root aliphatic plant hydroxylase lines had a root and a seed coat aliphatic polyester composition in which C22- and C24-hydroxyacids and alpha,omega-dicarboxylic acids were strongly reduced. However, these changes did not affect seed coat permeability and ion content in leaves. The presumed precursors, C22 and C24 fatty acids, accumulated in the suberin polyester. These results demonstrate that CYP86B1 is a very long chain fatty acid hydroxylase specifically involved in polyester monomer biosynthesis during the course of plant development.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Semillas / Arabidopsis / Raíces de Plantas / Sistema Enzimático del Citocromo P-450 / Proteínas de Arabidopsis / Ácidos Dicarboxílicos / Ácidos Grasos / Lípidos Idioma: En Revista: Plant Physiol Año: 2009 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Semillas / Arabidopsis / Raíces de Plantas / Sistema Enzimático del Citocromo P-450 / Proteínas de Arabidopsis / Ácidos Dicarboxílicos / Ácidos Grasos / Lípidos Idioma: En Revista: Plant Physiol Año: 2009 Tipo del documento: Article País de afiliación: Francia