Repeated brief postnatal maternal separation enhances hypothalamic gastric autonomic circuits in juvenile rats.
Neuroscience
; 165(1): 265-77, 2010 Jan 13.
Article
en En
| MEDLINE
| ID: mdl-19800939
Maternal separation of rat pups for 15 min each day over the first one to two postnatal weeks (MS15) has been shown to increase the active maternal care received by pups and to decrease their later neuroendocrine and behavioral stress reactivity compared to non-separated (NS) controls. Stress responses prominently feature altered gastric secretion and motility, and we previously reported that the developmental assembly of forebrain circuits underlying gastric autonomic control, including gastric responses to stress, is delayed by MS15 in neonatal rats [Card JP, Levitt P, Gluhovsky M, Rinaman L (2005) J Neurosci 25(40):9102-9111]. To determine how this early delay affects the later organization of central gastric autonomic circuits, the present study examined the effects of neonatal MS15 on central pre-gastric circuits assessed in post-weaning, juvenile rats. For this purpose, the retrograde transynaptic viral tracer, pseudorabies virus (PRV), was microinjected into the stomach wall of 28-30 day old male rats with an earlier developmental history of either MS15 or NS. Rats were perfused 72 h later and tissue was processed to reveal PRV-positive cells. Transynaptic PRV immunolabeling was quantified in selected preautonomic brainstem and forebrain regions, including the area postrema, bed nucleus of the stria terminalis, central nucleus of the amygdala, paraventricular nucleus of the hypothalamus (PVN), and visceral cortices. Compared to NS controls, MS15 rats displayed a significantly greater amount of PRV labeling within the PVN, including both the dorsal cap and ventral subnuclei. There were no postnatal group differences in the amount of PRV labeling within any other brain region examined in this study. This effect of MS15 to enhance hypothalamic preautonomic circuit structure indicates a strengthening of this pathway and may provide insight into how early life experience produces differential effects on later stress reactivity, including gastric secretory and motor responses to stress.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Sistema Nervioso Autónomo
/
Estómago
/
Hipotálamo
/
Privación Materna
Límite:
Animals
Idioma:
En
Revista:
Neuroscience
Año:
2010
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos