Extraction of color features in the spectral domain to recognize centroblasts in histopathology.
Annu Int Conf IEEE Eng Med Biol Soc
; 2009: 3685-8, 2009.
Article
en En
| MEDLINE
| ID: mdl-19965003
In this paper, we are proposing a novel automated method to recognize centroblast (CB) cells from non-centroblast (non-CB) cells for computer-assisted evaluation of follicular lymphoma tissue samples. The method is based on training and testing of a quadratic discriminant analysis (QDA) classifier. The novel aspects of this method are the identification of the CB object with prior information, and the introduction of the principal component analysis (PCA) in the spectral domain to extract color texture features. Both geometric and texture features are used to achieve the classification. Experimental results on real follicular lymphoma images demonstrate that the combined feature space improved the performance of the system significantly. The implemented method can identify centroblast cells (CB) from non-centroblast cells (non-CB) with a classification accuracy of 82.56%.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Técnicas Citológicas
/
Técnicas Histológicas
/
Linfoma Folicular
/
Histología
/
Linfoma
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Annu Int Conf IEEE Eng Med Biol Soc
Año:
2009
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos