Your browser doesn't support javascript.
loading
How to turn a genetic circuit into a synthetic tunable oscillator, or a bistable switch.
Marucci, Lucia; Barton, David A W; Cantone, Irene; Ricci, Maria Aurelia; Cosma, Maria Pia; Santini, Stefania; di Bernardo, Diego; di Bernardo, Mario.
Afiliación
  • Marucci L; Telethon Institute of Genetics and Medicine, Naples, Italy.
PLoS One ; 4(12): e8083, 2009 Dec 07.
Article en En | MEDLINE | ID: mdl-19997611
ABSTRACT
Systems and Synthetic Biology use computational models of biological pathways in order to study in silico the behaviour of biological pathways. Mathematical models allow to verify biological hypotheses and to predict new possible dynamical behaviours. Here we use the tools of non-linear analysis to understand how to change the dynamics of the genes composing a novel synthetic network recently constructed in the yeast Saccharomyces cerevisiae for In-vivo Reverse-engineering and Modelling Assessment (IRMA). Guided by previous theoretical results that make the dynamics of a biological network depend on its topological properties, through the use of simulation and continuation techniques, we found that the network can be easily turned into a robust and tunable synthetic oscillator or a bistable switch. Our results provide guidelines to properly re-engineering in vivo the network in order to tune its dynamics.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Relojes Biológicos / Genes de Cambio Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2009 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Relojes Biológicos / Genes de Cambio Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2009 Tipo del documento: Article País de afiliación: Italia
...