Your browser doesn't support javascript.
loading
Assessment of acetylcholinesterase activity in Clarias gariepinus as a biomarker of organophosphate and carbamate exposure.
Mdegela, Robinson H; Mosha, Resto D; Sandvik, Morten; Skaare, Janneche U.
Afiliación
  • Mdegela RH; Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania. rmdegela@yahoo.com
Ecotoxicology ; 19(5): 855-63, 2010 Jun.
Article en En | MEDLINE | ID: mdl-20169407
The objective of this study was to investigate the response of acetylcholinesterase (AChE) activities in Clarias gariepinus in response to Organophosphates (Ops) and carbamate exposure. The AChE activities were determined in plasma, and eye and brain homogenates of unexposed and exposed fish using Ellman's method and 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) chromophore. The baseline AChE activities in plasma, eyes and brain tissues in unexposed fish were comparable between males and females (P > 0.05). Concentrations of pesticides that inhibited 50% (IC(50)) of AChE activities in brain homogenates following in vitro exposures were 0.003, 0.03, 0.15, 190, 0.2, 0.003 and 0.002 microM for carbaryl, chlorfenvinphos, diazinon, dimethoate, fenitrothion, pirimiphosmethyl and profenofos, respectively. The in vivo dose-effect relationships were assessed using chlorfenvinphos and carbaryl at different concentrations that ranged from 0.0003 to 0.06 microM and 0.0005 to 0.05 microM, respectively. Acetylcholinesterase activities were comparable in plasma, and eye and brain homogenates from control and carbaryl-exposed fish. Following exposure of fish to chlorfenvinphos at concentrations above 0.03 microM, a significant inhibition of AChE activities in plasma (84%) and eye homogenate (50%) was observed. The AChE activities in brain homogenate were comparable between chlorfenvinphos-exposed fish and controls. Because carbaryl cause reversible inhibition of AChE activities was found to be more potent than chlorfenvinphos that cause irreversible inhibition following in vitro exposure. Contrary, carbaryl was less potent than chlorfenvinphos after in vivo exposure possibly due to more rapid biotransformation of carbaryl than chlorfenvinphos. Findings from this study have demonstrated that inhibition of AChE activity in C. gariepinus is a useful biomarker in assessing aquatic environment contaminated by anticholinesterases.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Organofosfatos / Acetilcolinesterasa / Bagres / Carbamatos Límite: Animals Idioma: En Revista: Ecotoxicology Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2010 Tipo del documento: Article País de afiliación: Tanzania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Organofosfatos / Acetilcolinesterasa / Bagres / Carbamatos Límite: Animals Idioma: En Revista: Ecotoxicology Asunto de la revista: SAUDE AMBIENTAL / TOXICOLOGIA Año: 2010 Tipo del documento: Article País de afiliación: Tanzania Pais de publicación: Estados Unidos