Prediction of beta-hairpins in proteins using physicochemical properties and structure information.
Protein Pept Lett
; 17(9): 1123-8, 2010 Sep.
Article
en En
| MEDLINE
| ID: mdl-20509847
In this study, we propose a new method to predict hairpins in proteins and its evaluation based on the support vector machine. Different from previous methods, new feature representation scheme based on auto covariance is adopted. We also investigate two structure properties of proteins (protein secondary structure and residue conformation propensity), and examine their effects on prediction. Moreover, we employ an ensemble classifier approach based on the majority voting to improve prediction accuracy on hairpins. Experimental results on a dataset of 1926 protein chains show that our approach outperforms those previously published in the literature, which demonstrates the effectiveness of the proposed method.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Proteínas
/
Biología Computacional
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Protein Pept Lett
Asunto de la revista:
BIOQUIMICA
Año:
2010
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Países Bajos