Your browser doesn't support javascript.
loading
Prediction of beta-hairpins in proteins using physicochemical properties and structure information.
Xia, Jun-Feng; Wu, Min; You, Zhu-Hong; Zhao, Xing-Ming; Li, Xue-Ling.
Afiliación
  • Xia JF; Intelligent Computing Laboratory, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
Protein Pept Lett ; 17(9): 1123-8, 2010 Sep.
Article en En | MEDLINE | ID: mdl-20509847
In this study, we propose a new method to predict hairpins in proteins and its evaluation based on the support vector machine. Different from previous methods, new feature representation scheme based on auto covariance is adopted. We also investigate two structure properties of proteins (protein secondary structure and residue conformation propensity), and examine their effects on prediction. Moreover, we employ an ensemble classifier approach based on the majority voting to improve prediction accuracy on hairpins. Experimental results on a dataset of 1926 protein chains show that our approach outperforms those previously published in the literature, which demonstrates the effectiveness of the proposed method.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Biología Computacional Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Protein Pept Lett Asunto de la revista: BIOQUIMICA Año: 2010 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas / Biología Computacional Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Protein Pept Lett Asunto de la revista: BIOQUIMICA Año: 2010 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos