Your browser doesn't support javascript.
loading
Syntheses, Structural Characterization and Thermoanalysis of Transition-Metal Compounds Derived from 3,5-Dinitropyridone.
Fan, Rong; Zhou, Qiu-Ping; Zhang, Guo-Fang; Cai, Mei-Yu; Li, Ping; Gan, Li-Hua; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng.
Afiliación
  • Fan R; Department of Chemistry, Tongji University, 200092 Shanghai, People's Republic of China.
J Chem Crystallogr ; 40(3): 266-271, 2009 Sep 28.
Article en En | MEDLINE | ID: mdl-20526459
Nine metal compounds of Mn(II), Zn(II) and Cd(II) derived from dinitropyridone ligands (3,5-dinitro-pyrid-2-one, 2HDNP; 3,5-dinitropyrid-4-one, 4HDNP and 3,5-dinitropyrid-4-one-N- hydroxide, 4HDNPO) were characterized by elemental analysis, FT-IR and partly by TG-DSC. Three of which were further structurally characterized by X-ray single-crystal diffraction analysis. The structures of the three compounds, Mn(4DNP)(2)(H(2)O)(4), 4, Zn(4DNPO)(2)(H(2)O)(4), 8, and Cd(4DNPO)(2)(H(2)O)(4), 9, crystallize in the monoclinic space group P2(1)/n and Z = 2, with a = 8.9281(9), b = 9.1053(9), c = 10.6881(11) A, beta = 97.9840(10) degrees for 4; a = 8.4154(7), b = 9.9806(8), c = 10.5695(8) A, beta = 97.3500(10) degrees for 8; a = 8.5072(7), b = 10.2254(8), c = 10.5075(8) A, beta 96.6500(10) degrees for 9. All three complexes are octahedral consisting of four equatorial water molecules, and two nitrogen or oxygen donor ligands (DNP or DNPO). The abundant hydrogen-bonding and pi-pi stacking interactions seem to contribute to stabilization of the crystal structures of the compounds. The TG-DTG results revealed that the complexes showed a weight loss sequence corresponding to all coordinated water molecules, nitro groups, the breaking of the pyridine rings and finally the formation of metal oxides.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Crystallogr Año: 2009 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Crystallogr Año: 2009 Tipo del documento: Article Pais de publicación: Estados Unidos