Your browser doesn't support javascript.
loading
Chronic hypoxia increases insulin-stimulated glucose uptake in mouse soleus muscle.
Gamboa, J L; Garcia-Cazarin, Mary L; Andrade, Francisco H.
Afiliación
  • Gamboa JL; Department of Physiology, University of Kentucky, Lexington, 40536, USA.
Am J Physiol Regul Integr Comp Physiol ; 300(1): R85-91, 2011 Jan.
Article en En | MEDLINE | ID: mdl-20962202
ABSTRACT
People living at high altitude appear to have lower blood glucose levels and decreased incidence of diabetes. Faster glucose uptake and increased insulin sensitivity are likely explanations for these

findings:

skeletal muscle is the largest glucose sink in the body, and its adaptation to the hypoxia of altitude may influence glucose uptake and insulin sensitivity. This study tested the hypothesis that chronic normobaric hypoxia increases insulin-stimulated glucose uptake in soleus muscles and decreases plasma glucose levels. Adult male C57BL/6J mice were kept in normoxia [fraction of inspired O2 = 21% (Control)] or normobaric hypoxia [fraction of inspired O2 = 10% (Hypoxia)] for 4 wk. Then blood glucose and insulin levels, in vitro muscle glucose uptake, and indexes of insulin signaling were measured. Chronic hypoxia lowered blood glucose and plasma insulin [glucose 14.3 ± 0.65 mM in Control vs. 9.9 ± 0.83 mM in Hypoxia (P < 0.001); insulin 1.2 ± 0.2 ng/ml in Control vs. 0.7 ± 0.1 ng/ml in Hypoxia (P < 0.05)] and increased insulin sensitivity determined by homeostatic model assessment 2 [21.5 ± 3.8 in Control vs. 39.3 ± 5.7 in Hypoxia (P < 0.03)]. There was no significant difference in basal glucose uptake in vitro in soleus muscle (1.59 ± 0.24 and 1.71 ± 0.15 µmol·g⁻¹·h⁻¹ in Control and Hypoxia, respectively). However, insulin-stimulated glucose uptake was 30% higher in the soleus after 4 wk of hypoxia than Control (6.24 ± 0.23 vs. 4.87 ± 0.37 µmol·g⁻¹·h⁻¹, P < 0.02). Muscle glycogen content was not significantly different between the two groups. Levels of glucose transporters 4 and 1, phosphoinositide 3-kinase, glycogen synthase kinase 3, protein kinase B/Akt, and AMP-activated protein kinase were not affected by chronic hypoxia. Akt phosphorylation following insulin stimulation in soleus muscle was significantly (25%) higher in Hypoxia than Control (P < 0.05). Neither glycogen synthase kinase 3 nor AMP-activated protein kinase phosphorylation changed after 4 wk of hypoxia. These results demonstrate that the adaptation of skeletal muscles to chronic hypoxia includes increased insulin-stimulated glucose uptake.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Músculo Esquelético / Altitud / Glucosa / Insulina / Hipoxia Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Am J Physiol Regul Integr Comp Physiol Asunto de la revista: FISIOLOGIA Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Músculo Esquelético / Altitud / Glucosa / Insulina / Hipoxia Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Am J Physiol Regul Integr Comp Physiol Asunto de la revista: FISIOLOGIA Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos