Your browser doesn't support javascript.
loading
XANNpred: neural nets that predict the propensity of a protein to yield diffraction-quality crystals.
Overton, Ian M; van Niekerk, C A Johannes; Barton, Geoffrey J.
Afiliación
  • Overton IM; School of Life Sciences Research, College of Life Sciences, University of Dundee, Dundee, UK.
Proteins ; 79(4): 1027-33, 2011 Apr.
Article en En | MEDLINE | ID: mdl-21246630
Production of diffracting crystals is a critical step in determining the three-dimensional structure of a protein by X-ray crystallography. Computational techniques to rank proteins by their propensity to yield diffraction-quality crystals can improve efficiency in obtaining structural data by guiding both protein selection and construct design. XANNpred comprises a pair of artificial neural networks that each predict the propensity of a selected protein sequence to produce diffraction-quality crystals by current structural biology techniques. Blind tests show XANNpred has accuracy and Matthews correlation values ranging from 75% to 81% and 0.50 to 0.63 respectively; values of area under the receiver operator characteristic (ROC) curve range from 0.81 to 0.88. On blind test data XANNpred outperforms the other available algorithms XtalPred, PXS, OB-Score, and ParCrys. XANNpred also guides construct design by presenting graphs of predicted propensity for diffraction-quality crystals against residue sequence position. The XANNpred-SG algorithm is likely to be most useful to target selection in structural genomics consortia, while the XANNpred-PDB algorithm is more suited to the general structural biology community. XANNpred predictions that include sliding window graphs are freely available from http://www.compbio.dundee.ac.uk/xannpred
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Proteínas / Redes Neurales de la Computación / Biología Computacional / Cristalización Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Proteins Asunto de la revista: BIOQUIMICA Año: 2011 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Programas Informáticos / Proteínas / Redes Neurales de la Computación / Biología Computacional / Cristalización Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Proteins Asunto de la revista: BIOQUIMICA Año: 2011 Tipo del documento: Article Pais de publicación: Estados Unidos