Your browser doesn't support javascript.
loading
Cell-cell interaction and diversity of emergent behaviours.
Damiani, C; Serra, R; Villani, M; Kauffman, S A; Colacci, A.
Afiliación
  • Damiani C; Department of Social, Cognitive and Quantitative Sciences, Modena and Reggio Emilia University, Reggio Emilia, Italia. chiara.damiani@unimore.it
IET Syst Biol ; 5(2): 137-44, 2011 Mar.
Article en En | MEDLINE | ID: mdl-21405202
Despite myriads of possible gene expression profiles, cells tend to be found in a confined number of expression patterns. The dynamics of Boolean models of gene regulatory networks has proven to be a likely candidate for the description of such self-organisation phenomena. Because cells do not live in isolation, but they constantly shape their functions to adapt to signals from other cells, this raises the question of whether the cooperation among cells entails an expansion or a reduction of their possible steady states. Multi random Boolean networks are introduced here as a model for interaction among cells that might be suitable for the investigation of some generic properties regarding the influence of communication on the diversity of cell behaviours. In spite of its simplicity, the model exhibits a non-obvious phenomenon according to which a moderate exchange of products among adjacent cells fosters the variety of their possible behaviours, which on the other hand are more similar to one another. On the contrary, a more invasive coupling would lead cells towards homogeneity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Comunicación Celular / Modelos Estadísticos / Biología de Sistemas / Modelos Biológicos Tipo de estudio: Risk_factors_studies Idioma: En Revista: IET Syst Biol Asunto de la revista: BIOLOGIA / BIOTECNOLOGIA Año: 2011 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Comunicación Celular / Modelos Estadísticos / Biología de Sistemas / Modelos Biológicos Tipo de estudio: Risk_factors_studies Idioma: En Revista: IET Syst Biol Asunto de la revista: BIOLOGIA / BIOTECNOLOGIA Año: 2011 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Reino Unido