Your browser doesn't support javascript.
loading
A sequential learning algorithm for complex-valued self-regulating resource allocation network-CSRAN.
Suresh, Sundaram; Savitha, Ramasamy; Sundararajan, Narasimhan.
Afiliación
  • Suresh S; School of Computer Engineering, Nanyang Technological University, Singapore. ssundaram@ntu.edu.sg
IEEE Trans Neural Netw ; 22(7): 1061-72, 2011 Jul.
Article en En | MEDLINE | ID: mdl-21632298
This paper presents a sequential learning algorithm for a complex-valued resource allocation network with a self-regulating scheme, referred to as complex-valued self-regulating resource allocation network (CSRAN). The self-regulating scheme in CSRAN decides what to learn, when to learn, and how to learn based on the information present in the training samples. CSRAN is a complex-valued radial basis function network with a sech activation function in the hidden layer. The network parameters are updated using a complex-valued extended Kalman filter algorithm. CSRAN starts with no hidden neuron and builds up an appropriate number of hidden neurons, resulting in a compact structure. Performance of the CSRAN is evaluated using a synthetic complex-valued function approximation problem, two real-world applications consisting of a complex quadrature amplitude modulation channel equalization, and an adaptive beam-forming problem. Since complex-valued neural networks are good decision makers, the decision-making ability of the CSRAN is compared with other complex-valued classifiers and the best performing real-valued classifier using two benchmark unbalanced classification problems from UCI machine learning repository. The approximation and classification results show that the CSRAN outperforms other existing complex-valued learning algorithms available in the literature.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Señales Asistido por Computador / Inteligencia Artificial / Aprendizaje / Modelos Neurológicos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: IEEE Trans Neural Netw Asunto de la revista: INFORMATICA MEDICA Año: 2011 Tipo del documento: Article País de afiliación: Singapur Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Señales Asistido por Computador / Inteligencia Artificial / Aprendizaje / Modelos Neurológicos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: IEEE Trans Neural Netw Asunto de la revista: INFORMATICA MEDICA Año: 2011 Tipo del documento: Article País de afiliación: Singapur Pais de publicación: Estados Unidos