Your browser doesn't support javascript.
loading
The PPARγ ligand rosiglitazone attenuates hypoxia-induced endothelin signaling in vitro and in vivo.
Kang, Bum-Yong; Kleinhenz, Jennifer M; Murphy, Tamara C; Hart, C Michael.
Afiliación
  • Kang BY; Department of Medicine, Atlanta Veterans Affairs Medical Centers, GA 30033, USA.
Am J Physiol Lung Cell Mol Physiol ; 301(6): L881-91, 2011 Dec.
Article en En | MEDLINE | ID: mdl-21926265
ABSTRACT
Peroxisome proliferator-activated receptor (PPAR) γ activation attenuates hypoxia-induced pulmonary hypertension (PH) in mice. The current study examined the hypothesis that PPARγ attenuates hypoxia-induced endothelin-1 (ET-1) signaling to mediate these therapeutic effects. To test this hypothesis, human pulmonary artery endothelial cells (HPAECs) were exposed to normoxia or hypoxia (1% O(2)) for 72 h and treated with or without the PPARγ ligand rosiglitazone (RSG, 10 µM) during the final 24 h of exposure. HPAEC proliferation was measured with MTT assays or cell counting, and mRNA and protein levels of ET-1 signaling components were determined. To explore the role of hypoxia-activated transcription factors, selected HPAECs were treated with inhibitors of hypoxia-inducible factor (HIF)-1α (chetomin) or nuclear factor (NF)-κB (caffeic acid phenethyl ester, CAPE). In parallel studies, male C57BL/6 mice were exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for 3 wk with or without gavage with RSG (10 mg·kg(-1)·day(-1)) for the final 10 days of exposure. Hypoxia increased ET-1, endothelin-converting enzyme-1, and endothelin receptor A and B levels in mouse lung and in HPAECs and increased HPAEC proliferation. Treatment with RSG attenuated hypoxia-induced activation of HIF-1α, NF-κB activation, and ET-1 signaling pathway components. Similarly, treatment with chetomin or CAPE prevented hypoxia-induced increases in HPAEC ET-1 mRNA and protein levels. These findings indicate that PPARγ activation attenuates a program of hypoxia-induced ET-1 signaling by inhibiting activation of hypoxia-responsive transcription factors. Targeting PPARγ represents a novel therapeutic strategy to inhibit enhanced ET-1 signaling in PH pathogenesis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Endotelina-1 / Tiazolidinedionas / PPAR gamma Límite: Animals / Humans / Male Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transducción de Señal / Endotelina-1 / Tiazolidinedionas / PPAR gamma Límite: Animals / Humans / Male Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos