Your browser doesn't support javascript.
loading
An effective method for accurate prediction of the first hyperpolarizability of alkalides.
Wang, Jia-Nan; Xu, Hong-Liang; Sun, Shi-Ling; Gao, Ting; Li, Hong-Zhi; Li, Hui; Su, Zhong-Min.
Afiliación
  • Wang JN; Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People's Republic of China.
J Comput Chem ; 33(2): 231-6, 2012 Jan 15.
Article en En | MEDLINE | ID: mdl-22045548
The proper theoretical calculation method for nonlinear optical (NLO) properties is a key factor to design the excellent NLO materials. Yet it is a difficult task to obatin the accurate NLO property of large scale molecule. In present work, an effective intelligent computing method, as called extreme learning machine-neural network (ELM-NN), is proposed to predict accurately the first hyperpolarizability (ß(0)) of alkalides from low-accuracy first hyperpolarizability. Compared with neural network (NN) and genetic algorithm neural network (GANN), the root-mean-square deviations of the predicted values obtained by ELM-NN, GANN, and NN with their MP2 counterpart are 0.02, 0.08, and 0.17 a.u., respectively. It suggests that the predicted values obtained by ELM-NN are more accurate than those calculated by NN and GANN methods. Another excellent point of ELM-NN is the ability to obtain the high accuracy level calculated values with less computing cost. Experimental results show that the computing time of MP2 is 2.4-4 times of the computing time of ELM-NN. Thus, the proposed method is a potentially powerful tool in computational chemistry, and it may predict ß(0) of the large scale molecules, which is difficult to obtain by high-accuracy theoretical method due to dramatic increasing computational cost.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Metales Alcalinos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Chem Asunto de la revista: QUIMICA Año: 2012 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Metales Alcalinos Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Chem Asunto de la revista: QUIMICA Año: 2012 Tipo del documento: Article Pais de publicación: Estados Unidos