Your browser doesn't support javascript.
loading
Detection of aberrant observations in a background of an unknown multidimensional Gaussian distribution.
Gelsema, E S; Leijnse, B; Wulkan, R W.
Afiliación
  • Gelsema ES; Department of Medical Informatics, Erasmus University, Rotterdam, The Netherlands.
Methods Inf Med ; 29(3): 236-42, 1990 Jul.
Article en En | MEDLINE | ID: mdl-2215265
An exploratory iterative technique for the detection of aberrant observations on a background of a multidimensional Gaussian distribution is described. Its development was motivated by the analysis of a set of three measurements reflecting the acid-base metabolism in the blood of 2,402 intensive care patients. This new, three-dimensional treatment of such data yields a meaningful description. A technical evaluation of the method, using artificially generated data is also presented. It is shown that the model parameters of the underlying Gaussian distributions are determined with good accuracy and that the accuracy with which the contamination is estimated increases with increasing distance of the contaminating observations from the mean.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Distribución Normal / Interpretación Estadística de Datos Tipo de estudio: Diagnostic_studies / Etiology_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Methods Inf Med Año: 1990 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Alemania
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Distribución Normal / Interpretación Estadística de Datos Tipo de estudio: Diagnostic_studies / Etiology_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Methods Inf Med Año: 1990 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Alemania