Comparative analysis of genomic signal processing for microarray data clustering.
IEEE Trans Nanobioscience
; 10(4): 225-38, 2011 Dec.
Article
en En
| MEDLINE
| ID: mdl-22157075
Genomic signal processing is a new area of research that combines advanced digital signal processing methodologies for enhanced genetic data analysis. It has many promising applications in bioinformatics and next generation of healthcare systems, in particular, in the field of microarray data clustering. In this paper we present a comparative performance analysis of enhanced digital spectral analysis methods for robust clustering of gene expression across multiple microarray data samples. Three digital signal processing methods: linear predictive coding, wavelet decomposition, and fractal dimension are studied to provide a comparative evaluation of the clustering performance of these methods on several microarray datasets. The results of this study show that the fractal approach provides the best clustering accuracy compared to other digital signal processing and well known statistical methods.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Simulación por Computador
/
Procesamiento de Señales Asistido por Computador
/
Procesamiento Automatizado de Datos
/
Genómica
/
Análisis por Micromatrices
Tipo de estudio:
Evaluation_studies
/
Prognostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
IEEE Trans Nanobioscience
Asunto de la revista:
BIOTECNOLOGIA
Año:
2011
Tipo del documento:
Article
Pais de publicación:
Estados Unidos