Your browser doesn't support javascript.
loading
A LASSO-based approach to analyzing rare variants in genetic association studies.
Brennan, Jennifer S; He, Yunxiao; Calixte, Rose; Nyirabahizi, Epiphanie; Jiang, Yuan; Zhang, Heping.
Afiliación
  • Brennan JS; Department of Epidemiology and Public Health, Yale University, New Haven, CT 06520, USA. heping.zhang@yale.edu.
BMC Proc ; 5 Suppl 9: S100, 2011 Nov 29.
Article en En | MEDLINE | ID: mdl-22373373
Genetic markers with rare variants are spread out in the genome, making it necessary and difficult to consider them in genetic association studies. Consequently, wisely combining rare variants into "composite" markers may facilitate meaningful analyses. In this paper, we propose a novel approach of analyzing rare variant data by incorporating the least absolute shrinkage and selection operator technique. We applied this method to the Genetic Analysis Workshop 17 data, and our results suggest that this new approach is promising. In addition, we took advantage of having 200 phenotype replications and assessed the performance of our approach by means of repeated classification tree analyses. Our method and analyses were performed without knowledge of the underlying simulating model. Our method identified 38 markers (in 65 genes) that are significantly associated with the phenotype Affected and correctly identified two causal genes, SIRT1 and PDGFD.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: BMC Proc Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: BMC Proc Año: 2011 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido