Your browser doesn't support javascript.
loading
Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis.
Cheng, Tao; Rivard, Benoit; Sánchez-Azofeifa, Arturo G; Féret, Jean-Baptiste; Jacquemoud, Stephane; Ustin, Susan L.
Afiliación
  • Cheng T; Center for Spatial Technologies and Remote Sensing, Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA. qtcheng@ucdavis.edu
J Plant Physiol ; 169(12): 1134-42, 2012 Aug 15.
Article en En | MEDLINE | ID: mdl-22608180
Leaf water content is an important variable for understanding plant physiological properties. This study evaluates a spectral analysis approach, continuous wavelet analysis (CWA), for the spectroscopic estimation of leaf gravimetric water content (GWC, %) and determines robust spectral indicators of GWC across a wide range of plant species from different ecosystems. CWA is both applied to the Leaf Optical Properties Experiment (LOPEX) data set and a synthetic data set consisting of leaf reflectance spectra simulated using the leaf optical properties spectra (PROSPECT) model. The results for the two data sets, including wavelet feature selection and GWC prediction derived using those features, are compared to the results obtained from a previous study for leaf samples collected in the Republic of Panamá (PANAMA), to assess the predictive capabilities and robustness of CWA across species. Furthermore, predictive models of GWC using wavelet features derived from PROSPECT simulations are examined to assess their applicability to measured data. The two measured data sets (LOPEX and PANAMA) reveal five common wavelet feature regions that correlate well with leaf GWC. All three data sets display common wavelet features in three wavelength regions that span 1732-1736 nm at scale 4, 1874-1878 nm at scale 6, and 1338-1341 nm at scale 7 and produce accurate estimates of leaf GWC. This confirms the applicability of the wavelet-based methodology for estimating leaf GWC for leaves representative of various ecosystems. The PROSPECT-derived predictive models perform well on the LOPEX data set but are less successful on the PANAMA data set. The selection of high-scale and low-scale features emphasizes significant changes in both overall amplitude over broad spectral regions and local spectral shape over narrower regions in response to changes in leaf GWC. The wavelet-based spectral analysis tool adds a new dimension to the modeling of plant physiological properties with spectroscopy data.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plantas / Agua / Ecosistema / Hojas de la Planta / Modelos Biológicos Tipo de estudio: Prognostic_studies / Risk_factors_studies País/Región como asunto: America central / Panama Idioma: En Revista: J Plant Physiol Asunto de la revista: BOTANICA Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plantas / Agua / Ecosistema / Hojas de la Planta / Modelos Biológicos Tipo de estudio: Prognostic_studies / Risk_factors_studies País/Región como asunto: America central / Panama Idioma: En Revista: J Plant Physiol Asunto de la revista: BOTANICA Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania