Your browser doesn't support javascript.
loading
Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana.
Wang, Ning; Cui, Yan; Liu, Yi; Fan, Huajie; Du, Juan; Huang, Zongan; Yuan, Youxi; Wu, Huilan; Ling, Hong-Qing.
Afiliación
  • Wang N; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China.
Mol Plant ; 6(2): 503-13, 2013 Mar.
Article en En | MEDLINE | ID: mdl-22983953
ABSTRACT
The Ib subgroup of the bHLH gene family in Arabidopsis contains four members (AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101). AtbHLH38 and AtbHLH39 were previously confirmed to interact with FER-like iron deficiency induced transcription factor (FIT), directly functioning in activation of the expression of ferric-chelate reductase FRO2 and high-affinity ferrous iron transporter IRT1. In this work, we characterized the functions of AtbHLH100 and AtbHLH101 in the regulation of the iron-deficiency responses and uptake. Yeast two-hybrid analysis and bimolecular fluorescence complementation assay demonstrated that both AtbHLH100 and AtbHLH101 could interact with FIT. Dual expression of either AtbHLH100 or AtbHLH101 with FIT in yeast cells activated the GUS expression driven by promoters of FRO2 and IRT1. The plants overexpressing FIT together with AtbHLH101 showed constitutive expression of FRO2 and IRT1 in roots, and accumulated more iron in shoots. Further, the single, double, and triple knockout mutants of AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101 were generated and characterized. The FRO2 and IRT1 expression in roots and the iron content in shoots were more drastically decreased in the triple knockout mutant of AtbHLH39, AtbHLH100, and AtbHLH101 than that of the other available double and triple mutants of the four genes. Comparison of the physiological responses as well as the expression of FRO2 and IRT1 in the multiple knockout mutants under iron deficiency revealed that AtbHLH100, AtbHLH38, AtbHLH101, and AtbHLH39 played the gradually increased important role in the iron-deficiency responses and uptake. Taken all together, we conclude that the four Ib subgroup bHLH proteins are required and possess redundant functions with differential significance for activation of iron-deficiency responses and uptake in Arabidopsis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis / Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico / Deficiencias de Hierro Idioma: En Revista: Mol Plant Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2013 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis / Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico / Deficiencias de Hierro Idioma: En Revista: Mol Plant Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2013 Tipo del documento: Article País de afiliación: China