Nanoscale bending of multilayered boron nitride and graphene ribbons: experiment and objective molecular dynamics calculations.
Phys Rev Lett
; 109(2): 025504, 2012 Jul 13.
Article
en En
| MEDLINE
| ID: mdl-23030179
By combining experiments performed on nanoribbons in situ within a high-resolution TEM with objective molecular dynamics simulations, we reveal common mechanisms in the bending response of few-layer-thick hexagonal boron nitride and graphene nanoribbons. Both materials are observed forming localized kinks in the fully reversible bending experiments. Microscopic simulations and theoretical analysis indicate platelike bending behavior prior to kinking, in spite of the possibility of interlayer sliding, and give the critical curvature for the kinking onset. This behavior is distinct from the rippling and kinking of multi- and single-wall nanotubes under bending. Our findings have implications for future study of nanoscale layered materials, including nanomechanical device design.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2012
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos