Your browser doesn't support javascript.
loading
Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36.
Palacios-Prado, Nicolás; Hoge, Gregory; Marandykina, Alina; Rimkute, Lina; Chapuis, Sandrine; Paulauskas, Nerijus; Skeberdis, Vytenis A; O'Brien, John; Pereda, Alberto E; Bennett, Michael V L; Bukauskas, Feliksas F.
Afiliación
  • Palacios-Prado N; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
J Neurosci ; 33(11): 4741-53, 2013 Mar 13.
Article en En | MEDLINE | ID: mdl-23486946
ABSTRACT
Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg(2+)]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg(2+)]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg(2+)]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg(2+)-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg(2+)]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg(2+)]i, but was not increased by lowering [Mg(2+)]i; single-channel conductance did not change. We showed that [Mg(2+)]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg(2+)]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg(2+)]i, are modified.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Activación del Canal Iónico / Uniones Comunicantes / Conexinas / Líquido Intracelular / Magnesio / Neuronas Idioma: En Revista: J Neurosci Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Activación del Canal Iónico / Uniones Comunicantes / Conexinas / Líquido Intracelular / Magnesio / Neuronas Idioma: En Revista: J Neurosci Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos