Your browser doesn't support javascript.
loading
Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages.
Orlando, Antonina; Re, Francesca; Sesana, Silvia; Rivolta, Ilaria; Panariti, Alice; Brambilla, Davide; Nicolas, Julien; Couvreur, Patrick; Andrieux, Karine; Masserini, Massimo; Cazzaniga, Emanuela.
Afiliación
  • Orlando A; Department of Health Sciences, University of Milano-Bicocca, Monza, Italy.
Int J Nanomedicine ; 8: 1335-47, 2013.
Article en En | MEDLINE | ID: mdl-23717039
ABSTRACT

BACKGROUND:

As part of a project designing nanoparticles for the treatment of Alzheimer's disease, we have synthesized and characterized a small library of nanoparticles binding with high affinity to the ß-amyloid peptide and showing features of biocompatibility in vitro, which are important properties for administration in vivo. In this study, we focused on biocompatibility issues, evaluating production of nitric oxide by cultured human umbilical vein endothelial cells and macrophages, used as models of cells which would be exposed to nanoparticles after systemic administration.

METHODS:

The nanoparticles tested were liposomes and solid lipid nanoparticles carrying phosphatidic acid or cardiolipin, and PEGylated poly(alkyl cyanoacrylate) nanoparticles (PEG-PACA). We measured nitric oxide production using the Griess method as well as phosphorylation of endothelial nitric oxide synthase and intracellular free calcium, which are biochemically related to nitric oxide production. MTT viability tests and caspase-3 detection were also undertaken.

RESULTS:

Exposure to liposomes did not affect the viability of endothelial cells at any concentration tested. Increased production of nitric oxide was detected only with liposomes carrying phosphatidic acid or cardiolipin at the highest concentration (120 µg/mL), together with increased synthase phosphorylation and intracellular calcium levels. Macrophages exposed to liposomes showed a slightly dose-dependent decrease in viability, with no increase in production of nitric oxide. Exposure to solid lipid nanoparticles carrying phosphatidic acid decreased viability in both cell lines, starting at the lowest dose (10 µg/mL), with increased production of nitric oxide detected only at the highest dose (1500 µg/mL). Exposure to PEG-PACA affected cell viability and production of nitric oxide in both cell lines, but only at the highest concentration (640 µg/mL).

CONCLUSION:

Liposomal and PEG-PACA nanoparticles have a limited effect on vascular homeostasis and inflammatory response, rendering them potentially suitable for treatment of Alzheimer's disease. Moreover, they highlight the importance of testing such nanoparticles for production of nitric oxide in vitro in order to identify a therapeutic dose range suitable for use in vivo.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos beta-Amiloides / Células Endoteliales / Nanopartículas / Macrófagos / Óxido Nítrico Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Int J Nanomedicine Año: 2013 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos beta-Amiloides / Células Endoteliales / Nanopartículas / Macrófagos / Óxido Nítrico Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Int J Nanomedicine Año: 2013 Tipo del documento: Article País de afiliación: Italia
...