Your browser doesn't support javascript.
loading
Osmotic stress adaptation in Lactobacillus casei BL23 leads to structural changes in the cell wall polymer lipoteichoic acid.
Palomino, Maria Mercedes; Allievi, Mariana C; Gründling, Angelika; Sanchez-Rivas, Carmen; Ruzal, Sandra M.
Afiliación
  • Palomino MM; Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, London, UK.
  • Allievi MC; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
  • Gründling A; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
  • Sanchez-Rivas C; Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, London, UK.
  • Ruzal SM; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
Microbiology (Reading) ; 159(Pt 11): 2416-2426, 2013 Nov.
Article en En | MEDLINE | ID: mdl-24014660
The probiotic Gram-positive bacterium Lactobacillus casei BL23 is naturally confronted with salt-stress habitats. It has been previously reported that growth in high-salt medium, containing 0.8 M NaCl, leads to modifications in the cell envelope of this bacterium. In this study, we report that L. casei BL23 has an increased ability to form biofilms and to bind cations in high-salt conditions. This behaviour correlated with modifications of surface properties involving teichoic acids, which are important cell wall components. We also showed that, in these high-salt conditions, L. casei BL23 produces less of the cell wall polymer lipoteichoic acid (LTA), and that this anionic polymer has a shorter mean chain length and a lower level of d-alanyl-substitution. Analysis of the transcript levels of the dltABCD operon, encoding the enzymes required for the incorporation of d-alanine into anionic polymers, showed a 16-fold reduction in mRNA levels, which is consistent with a decrease in d-alanine substitutions on LTA. Furthermore, a 13-fold reduction in the transcript levels was observed for the gene LCABL_09330 coding for a putative LTA synthase. To provide further experimental evidence that LCABL_09330 is a true LTA synthase (LtaS) in L. casei BL23, the enzymic domain was cloned and expressed in E. coli. The purified protein was able to hydrolyse the membrane lipid phosphatidylglycerol as expected for an LTA synthase enzyme, and hence LCABL_09330 was renamed LtaS. The purified enzyme showed Mn(2+)-ion dependent activity, and its activity was modulated by differences in NaCl concentration. The decrease in both ltaS transcript levels and enzyme activity observed in high-salt conditions might influence the length of the LTA backbone chain. A putative function of the modified LTA structure is discussed that is compatible with the growth under salt-stress conditions and with the overall envelope modifications taking place during this stress condition.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Presión Osmótica / Ácidos Teicoicos / Pared Celular / Lipopolisacáridos / Lacticaseibacillus casei Idioma: En Revista: Microbiology (Reading) Asunto de la revista: MICROBIOLOGIA Año: 2013 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Presión Osmótica / Ácidos Teicoicos / Pared Celular / Lipopolisacáridos / Lacticaseibacillus casei Idioma: En Revista: Microbiology (Reading) Asunto de la revista: MICROBIOLOGIA Año: 2013 Tipo del documento: Article Pais de publicación: Reino Unido