Precise marker excision system using an animal-derived piggyBac transposon in plants.
Plant J
; 77(3): 454-63, 2014 Feb.
Article
en En
| MEDLINE
| ID: mdl-24164672
Accurate and effective positive marker excision is indispensable for the introduction of desired mutations into the plant genome via gene targeting (GT) using a positive/negative counter selection system. In mammals, the moth-derived piggyBac transposon system has been exploited successfully to eliminate a selectable marker from a GT locus without leaving a footprint. Here, we present evidence that the piggyBac transposon also functions in plant cells. To demonstrate the use of the piggyBac transposon for effective marker excision in plants, we designed a transposition assay system that allows the piggyBac transposition to be visualized as emerald luciferase (Eluc) luminescence in rice cells. The Eluc signal derived from piggyBac excision was observed in hyperactive piggyBac transposase-expressing rice calli. Polymerase chain reaction, Southern blot analyses and sequencing revealed the efficient and precise transposition of piggyBac in these calli. Furthermore, we have demonstrated the excision of a selection marker from a reporter locus in T0 plants without concomitant re-integration of the transposon and at a high frequency (44.0% of excision events), even in the absence of negative selection.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Oryza
/
Elementos Transponibles de ADN
/
Genoma de Planta
/
Marcación de Gen
/
Vectores Genéticos
Límite:
Animals
Idioma:
En
Revista:
Plant J
Asunto de la revista:
BIOLOGIA MOLECULAR
/
BOTANICA
Año:
2014
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Reino Unido